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Abstract—This paper investigates fundamental performance 
limits of medium access control (MAC) protocols for 
particular underwater multi-hop sensor networks under a 
fair-access criterion requiring that sensors have an equal 
rate of underwater frame delivery to a base station. Tight 
upper bounds on network utilization and tight lower bounds 
on minimum time between samples are derived for fixed 
linear topology. The paper also examines the implication of 
the end-to-end performance bounds regarding the traffic 
rate and sensing time interval of individual sensors. 

I. INTRODUCTION 
Fundamental performance limitations must be well 

understood when establishing a network protocol to ensure 
the protocol is appropriate for a particular network design 
choice. The underwater acoustic sensor networks 
(UASNs) considered in this paper are multi-hop. Each 
network node performs sensing, transmission, and relay. 
All data frames are destined to a dedicated data-collection 
node, called the base station (BS), that is responsible for 
relaying the frames to a dislocated command center over a 
radio or wired link. 

For this study we consider a regular topology, the 
linear or string network, designed by researchers from UC 
Santa Barbara for moored oceanographic applications [1], 
in which an array of equally spaced underwater marine 
sensors are suspended from a mooring buoy. All data in 
the network flows to a base station above water which is 
responsible for storing and relaying all collected data to a 
command center over an aerial radio link. During an event 
of interest, e.g., a storm, it is desirable that the command 
center acquires near real-time readings from all the sensors 
in order to calibrate them as the event progresses [1]. An 
equally appropriate employment would include a 
collection of seismic sensors, perhaps a long grid 
topology, along a potential tsunami path that would 
monitor the movement of the wave phenomena for a 
relatively short distance and relay the collected data 
samples through the base station to an observatory station 
as the radio signal would travel nearly 200,000 times faster 
than the acoustic signal. For such real-world applicable 
networks, we observe that it is critical for the MAC 
protocol to ensure each sensor has an equitable 
opportunity to forward its local observations to the 

command system in order to establish trends or detect 
anomalies. 

In this paper, we adopted a notion of fairness from our 
previous work in [5] for sensor data delivery to this 
environment and to support application of a fair-access 
criterion to MAC protocols under consideration for use in 
UASNs. In our previous work, the studies focus on land 
(non-acoustic) sensor networks. This paper derives tight 
bounds on the network utilization and frame latency 
performance of fair-access MAC protocols for linear 
topologies in underwater sensor networks. This paper 
addresses the impact of non-trivial propagation delay, a 
definitive character of underwater acoustic networks. Tight 
upper bounds on network utilization and tight lower 
bounds on minimum time between samples are derived for 
a nominal fixed linear topology. The significance of these 
bounds is two-fold: First, they are universal, i.e., they hold 
for any MAC protocol conforming to the fair-access 
criterion, such as contention-based protocols (e.g., Aloha 
or CSMA based) or contention-free protocols (TDMA, 
etc.). Second, they are provably tight, i.e., they can be 
achieved by a version of time division multiple access 
(TDMA) protocol that is self-clocking, and therefore does 
not require system-wide clock synchronization. The paper 
also examines the implication of the end-to-end 
performance bounds regarding the traffic rate and sensing 
time interval of individual sensors. The challenge of this 
work also lies in the fact that the propagation delay impact 
in underwater sensor networks is difficult to model due to 
the time varying nature of the environment. 

The existence of a computationally tractable optimal 
fair-access protocol is interesting since it has been shown 
that the general problem of optimal scheduling for a multi-
hop network is NP-complete [2]. It may be because we 
consider only a particular topology where the routing 
structure is simple. The data forwarding paths of a linear 
or grid network can be modeled as a tree. While tree-based 
scheduling may be too restrictive for arbitrary ad hoc 
networks [3], such an approach seems appropriate for 
networks where all traffic must flow to a collective base 
station, essentially forming a root node. The flow of traffic 
along the branches of the tree must be de-conflicted with 
the flow of traffic along other branches so that collisions 
or interference between branches is eliminated or 
minimized. Individual node transmission windows may be 
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adaptive [4] or static as described herein. While a multi-
hop star topology may be of particular interest, a linear one 
is directly applicable to buoyed networks. Further, if the 
branches of the star are non-interfering, then it is the final 
hop of the star by which each branch connects to the base 
station that must be carefully controlled to limit collisions. 
In particular, if the one-hop neighbors of the base station 
form a natural ring structure a simple token passing 
scheme, perhaps out-of-band from the data streams, may 
provide sufficient control to mitigate access issues for 
multiple “strings” sharing a common base station. 

We also examined the implication of the end-to-end 
performance bounds on the traffic generation rate and 
sensing interval of individual sensors. This paper presents 
an analysis that confirms the maximum feasible offered 
load by each sensor node is inversely proportional to the 
size of the network, which implies that multiple smaller 
networks may be inherently preferable to fewer larger 
networks.  

In short, the specific contributions of this paper include 
a consideration of the fair-access concept as it applies to 
UASNs, a formal analysis of utilization and delay 
performance of specific linear UASNs that require fair-
access, a scheduling algorithm to achieve the optimal 
utilization, and theoretical limits on the sustainable traffic 
load per sensor node for these particular sensor networks.  

II. BACKGROUND 
Similar to our previous work [5], a sensor network is 

defined as follows. Consider a wireless sensor network 
including a base station (BS) and n  sensor nodes, denoted 
as , 1,2,...,iO i n= . Sensor nodes generate sensor data 
frames and send them to the BS. Some sensor nodes 
perform an additional role of forwarding/routing frames to 
the BS, i.e., a frame may need to be relayed by several 
nodes to reach the BS.  

From [5], let ( )U n  denote the utilization of the above 
network, i.e., the fraction of time that the BS is busy with 
receiving correct data frames. Let iG  denote the 
contribution of (i.e., data generated by) sensor iO  to the 

total utilization. The following holds: 
1

( ) n

i iU n G
=

=∑ . 
However, in [5], prorogation delay is assumed to be 
negligible, but in this paper we cannot assume so as the 
propagation delay in acoustic networks is considerably 
more than in wired or wireless networks of the same 
physical expanse. Implicit in the utilization is the impact 
of propagation delays. As noted, these delays can be 
significant for UASNs, especially when compared to more 
traditional RF-based wireless networks.  

Suppose that the network is required to use a MAC 
protocol that ensures all hosts are provided the capability 
to contribute equally to the composite throughput. From 
[5], the fair criterion is presented as follows. 

Fair-access Criterion Definition: A MAC protocol 
used by the sensor network satisfies the fair-access 
criterion if all sensor nodes contribute equally to the 
network utilization, i.e., the following condition holds: 

1 2 ... nG G G= = = .                                               (1) 
Optimization Objective and Assumptions: Consider 

a sensor network such as described above. The 
optimization problem is to maximize ( )U n  under the fair-
access criterion [5]. In the remainder of the paper, we 
investigate this problem under the following assumptions: 

a. All data frames are of the same size. 
b. All sensor nodes have the same transmission 

capacity. 
c. Acknowledgments are either implicit via 

piggyback or, if explicit, are out-of-band. 
d. In-network sensor data processing is not used. 
e. If two sensor nodes are within one-hop, one 

sensor node’s transmission will interfere with the 
other’s reception 

f. Internal node processing delays, associated with 
frame storage and queuing within a node, are 
negligible. 

Linear Topology [5]: The topology is illustrated in 
Fig.1. There are n  sensor nodes and a BS placed in a 
linear fashion. Assume that the transmission range of each 
node is just one hop and the interference range is less than 
two hops. In other words, only neighboring nodes have 
overlapping transmission ranges. As shown in Fig.1, iO  

generates sensor data frames and sends the frames to 1iO + . 

iO  also relays data frames received from 1iO −  to 1iO + . 
Finally, nO  forwards data to the BS, which collects all the 
data frames. 

 
Figure 1.   A linear topology 

In our previous work we derived upper bounds on 
( )U n and lower bounds on the effective inter-transmission 

delay of a node, that is, the time between samples for a 
given node, for a linear topology. This bound is reiterated 
here. 

Theorem 1: For the linear topology under traditional 
RF-based wireless networks, under fair-access, ( )U n  is 
upper bounded by the optimal utilization, ( )optU n : 

[ ]3( 1) ,       1
( ) ( )

1,                        1opt
n n n

U n U n
n

⎧ − >⎪≤ = ⎨
=⎪⎩

                 (2) 

An asymptotic lower limit for the optimal utilization exists 

and is 1
3

.  

Moreover, the inter-sample time for each node, 
denoted by ( )D n , is lower bounded by the minimum 
effective transmission delay for a node, or minimum cycle 
time, ( )optD n : 



3( 1) ,       1
( ) ( )

,                  1opt

n T n
D n D n

T n
− >⎧

≥ = ⎨ =⎩
                    (3) 

where T is the transmission time of one data  frame. 
In [5] we proved that the performance bounds 

introduced in Theorem 1 are indeed achievable under 
traditional RF-based wireless networks. Particularly, we 
presented a TDMA scheduling algorithm that conforms to 
the fair-access criterion and showed it achieves the 
performance bounds. Note that herein the optimal 
utilization is under the constraint of the fair-access 
criterion. Otherwise, by simply allowing only nO  to 
transmit, the optimal utilization is 1. The TDMA algorithm 
provided in [5], which we term optimal fair scheduling, is 
described below. 

Optimal Fair Scheduling for Linear Topology: the 
cases of 1,2, 3,n or=  respectively, are simple and omitted 
for sake of brevity. For the general case of 3n > , 
let 3( 1)optd D n= = − . A schedule with cycle d  can be 
created as follows. 1O  transmits in timeslots 
( ) 1; 0,1,...d j j⋅ + = ; iO  ( 2,.... )i n=  transmits relayed 
frames to 1iO +  in timeslots from ( ) ( )d j f i⋅ +  through 
( ) ( ) 2d j f i i⋅ + + −  , and transmits one of its own frames 
to 1iO +  in timeslot ( ) ( ) 1; 0,1,...d j f i i j⋅ + + − = , 
where ( )f i is recursively defined as follows: 

1,                           1
( )

( -1) ( -1),      1
i

f i
f i i i

=⎧
= ⎨ + >⎩

                          (4) 

Note that if we allow self-clocking among sensors by 
listening to the wireless media, the above TDMA scheme 
can be implemented easily without requiring system-wide 
clock synchronization. 

In [5], we also addressed the impact of end-to-end 
performance bounds on the traffic load limitation of each 
sensor. Let ρ  denote the traffic load generated by each 
sensor node. For the network depicted in Fig. 1, since each 
node can transmit at most one original frame, which 
requires a period of T  in every 3( 1)n T−  time period, 
then, we must have that 1 [3( 1)]T x nρ ≤ = − if 2n > . 
Furthermore, a data frame contains protocol overhead 
(typically control fields in a header and/or trailer). Thus, 
ρ  must be adjusted to account for this overhead. Denote 
m  to be the fraction of actual data bits in a frame. From 
[5], we have the following theorem. 

Theorem 2:, For the linear topology illustrated in Fig. 
1 under traditional RF-based wireless networks, under the 
fair-access criterion, the maximum feasible per node 
traffic load is  

,  if   2
3( 1)

m n
n

>
−

                                       (5) 

III. UNDERWATER SENSOR NETWORK 
Consider an underwater sensor network, where the 

transmission medium is the water column itself and the 

carrier is an acoustic signal. We derive upper bounds on 
( )U n  and lower bounds on the minimum transmission 

delay, or time between samples, for general linear 
topologies, under the fair-access criteria. We consider the 
impact of non-negligible propagation delay. We denote 
transmission time and propagation delay by T  and τ , 
respectively. Let us give an intuitive analysis before the 
formal proof. The fair-access criterion requires that 

1 2 ... ... niG G G G= = = ==  for the network. Let x  denote 
the time period during which the BS successfully receives 
at least one original data frame from each sensor node in 
the network. It is clear that x  is a random variable. If we 
can derive the minimum value of x , and if the minimum 
value of x  is achieved, the maximum utilization is also 
achieved. During the time period x , the BS has busy time 
(denoted as b ) in which it is receiving frames and idle 
time (denoted as y ) while it is either blocked or waiting 
for its upstream neighbor to send. Thus, x b y= + . Note 
that x  is the cycle time for the network under the fair-
access criteria and determines the effective inter-
transmission delay for a node for an ordering of relayed 
frames. If no frame is transmitted by nΟ  during a period, 
there must exist an idle period with the same length in BS. 
Therefore, for deriving the idle period in the BS, we just 
need to derive the period during which nΟ  could not 
transmit frames. 

Theorem 3: For the linear topology, under fair-access, 
( )U n is upper bounded by the optimal utilization ( )optU n  

for all τ ( )2Tτ ≤ : 

1 2 2
( ) ( )

[3( ) ( ) ] 1  
1,                                            1      

,             
opt

T T
n n

n n n
U U

n
n

τ−
≤ =

− − >⎧
⎨ =⎩

      (6) 

and the maximum utilization ( )optU n can be achieved by a 
special case. An asymptotic lower limit for the optimal 
utilization exists and is ( )21 3 Tτ− . The inter-sample 
time for each node, denoted by ( )nD , is lower bounded by 
the minimum effective inter-transmission delay for a node, 
or the minimum cycle time, ( )opt nD : 

1 2 2
( ) ( )

3( ) ( ) 1
,                                                1      

,                       
opt

T
n n

n n
D D

T n
nτ−

≥ =
− − >⎧

⎨ =⎩
   (7) 

Proof of Theorem 3: 1) For 2n > : During the time 
period x , the BS needs to receive at least n  frames from 

nΟ .Thus, nΟ transmits at least n  frames (including 1n −  
relayed frames and one of its generated frames). We have 
b nT≥ . Likewise, in order for nΟ  to receive ( 1)n −  
frames from 1n−Ο , nΟ  needs to listen to at least ( 1)n −  
frames, during which (there is τ  time delay) the BS must 
be idle. Furthermore, when 2n−Ο transmits, nΟ  must not 
transmit during a corresponding period during which the 
frames arrive at 1n−Ο . This is because nΟ ’s transmissions 
will interfere with the frame reception by 1n−Ο  from 2n−Ο , 



since nΟ and 2n−Ο  are only two-hops apart. 2n−Ο  needs to 
transmit at least 2)(n −  frames to 1n−Ο  during which nΟ  
could not transmit. But here we note that the period during 
which nΟ  is blocked by receiving frames from 1n−Ο  may 
overlap with the period during which nΟ  is blocked for 
reception by 1n−Ο  from 2n−Ο  due to the propagation 
delays. This analysis is illustrated in Fig. 2, in which, 

nΟ receives frame A  in )( , Tt t +  and 2n−Ο transmits 
frame B  in 1 1( , )t t T+  so that nΟ  is blocked in 1 1( , )t t T+  
since they are within two-hops, assuming the propagation 
delay is the same between both node pairs. Thus, it is 
apparent that some overlap of the induced idle periods may 
occur without frame loss. 

T

2n−Ο

1n−Ο

nΟ

T

T

t t T+

1t

1t

1t T+

1t T+

A

B

 
Figure 2.  Overlapping period 
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2 2t T τ−+2t T τ−+

2 2t T τ−+

 
Figure 3.  Maximal overlapping 

Now, what we need to do is to maximize the 
overlapping period. When overlapping is maximum, the 
idle period generated independently by frame B  is 
minimum. For maximizing the throughput of 1n−Ο , let 

1n−Ο  just complete transmission of frame A , then begin 
to receive frame B . This analysis is illustrated in Fig. 3, 

nΟ receives frame A in ( , )t t T+ , that implies 1n−Ο  
transmitted frame A  in ( , )t t Tτ τ− − + . Let 2n−Ο  
transmit frame B  in 2 2 2( , )t T t Tτ τ− −+ +  so that its 
first bit reaches 1n−Ο  in t T τ−+ . From Fig. 3, it is easy to 

see that if 2 0T τ− ≥  , for 2Tτ ≤ , the maximum 
overlapping period is 2( , )t T t Tτ−+ + . 

Thus, the minimum time during which nΟ may not 
transmit in order to prevent collision with frame B at 1n−Ο  
is  

2 2 ( 2( ) )t T t T Tτ τ+ − − + = −  
So the total time when nΟ  must be idle, assuming that 
each frame is sent individually, is  

1 2 2( ) ( )( )Tn n Ty τ+ −≥ − −  
Therefore, we have 

1 2 2( ) ( )( )T Tn n n Tx b y τ+ + −≥ − −= +  
Since ( )nD x= , we have derived equation (6) for the 

case of 2n > . During the time period x , the BS may 
receive more than n  frames, but only n  frames can be 
counted into the utilization under the fair-access criterion. 
Since we must minimize x  to achieve the optimal 
utilization, we have  

1 2 2
( )

( ) ( )( ) 3( 1) 2( 2)

T T

T T

n n
U n

n n n T n nτ τ+ + −− − − − −
≤ =  

which proves equation (6) for the case of 2n > . 
2) For 2n = : Since we want 1 2G G= , during the time 
period x , 2Ο transmits at least two frames (one relayed 
frame and its own). We have 2b T≥ . 2Ο  needs to listen to 
at least one frame from 1Ο . We have Ty ≥ and thus 

3Tx b y ≥= + . So we must minimize x to achieve the 

optimal utilization, 2 2 2
( )

3 3

T T

T
U n

x
= ≤ = , which proves 

equation (6) for this case. Note that the propagation delay 
can be ignored since it is possible to send the frame from 

1Ο  such that it arrives at 2Ο  just as 2Ο  finishes its 
transmission of the previous frames.  
3) For 1n = : Obviously, (1) 1U ≤ . 
We will prove that the performance bounds ( )optU n  are 
indeed achievable in a special case next.  

Note that herein the optimal utilization is under the 
constraint of the fair-access criterion when 2Tτ ≤ . We 
first give the algorithm for the optimal fair scheduling. 
Then we show the optimal fair scheduling for the cases of 

3,5n =  in Fig. 4 and Fig. 5, respectively. Before showing 
the algorithm, we need give some notations. Let iA  denote 
the frame generated by iΟ ,1 i n≤ ≤ . 

Algorithm for optimal Fair Scheduling for Linear 
Topology: First, we define a cycle. Let 0t  denote the time 
from which nΟ  begins transmission of its own frame nA . 
Thus, the BS receives frame nA  at time 0t τ+ . As we 
mentioned above, x  is the cycle time for the network 
under the fair-access criteria. Thus we define a cycle as 

0 0( , )t t xτ τ+ + + . Thus, the next cycle is 

0 0 2( , )t x t xτ τ+ + + + . 



0t 0t T+ 0 2t T+

0t τ+ 0t T τ+ +

0t T τ+ − 0 2t T τ+ −

0 2 2t T τ+ − 0 3 2t T τ+ −

0 3t T τ+ −

0 3 2t T τ+ − 0 4 2t T τ+ − 0 5 2t T τ+ − 0 6 2t T τ+ −

0 4 3t T τ+ − 0 5 3t T τ+ −

0 3t T τ+ − 0 4t T τ+ − 0 5t T τ+ − 0 6t T τ+ −

3Ο

2Ο

1Ο

 
Figure 4.  Bottom-up approach for Linear topology (n=3) [Legend: TR: 
transmit own traffic; R: relay traffic (note: actually relay latest received 
frame from upstream nodes); L: receiving 

3Ο

2Ο

1Ο

4Ο

5Ο
0t

0t τ+ 0 12 5Tt τ+ −
 

Figure 5.   Bottom-up approach for Linear topology (n=5) 

Second, any node iΟ , 1 i n≤ ≤ in the cycle 

0 0( , )t t xτ τ+ + + , has a start time (the time at which iΟ  
starts to transmit its own frame, iA ) and an end time (the 
time at which iΟ  just completes iA ’s transmission). We 
denote the start time and the end time by is  and id , 
respectively. is  and id are defined as follows: 

0

0

( )( )   
                                                    

                 1     
i

t T n i
S

n i
t

i n
i n

τ− −
=

+ −⎧
⎨
⎩

≤ <
=

 

0

( 1)(3 2 )  
+                                              

                 1     
i

i

S T i T
d

t x
i n

i n
τ+ − −

=
+⎧

⎨
⎩

≤ <
=

 

where 3( 1) 2( 2)x n T n τ= − − − . 
Third, we defined , )( i ids  as an active period for node 

iΟ , 1 i n≤ ≤  in the cycle 0 0( , )t t xτ τ+ + + . In period 

, )( i ids , iΟ  includes a TR (transmit own traffic) period 
and 1i −  subcycles. Their definitions are given as follows. 
[ ], Ti is s +  denotes the TR period during which iΟ  

transmits its own frame iA . , ][ Ti ids +  is divided into 1i −  
subcycles. We denote a subcycle by , , 1[ , ]i j i ju u + , 

1,..., 1j i= − during which iΟ  receives and relays a frame 
from upstream nodes. Thus, we have 

1,

, ,1

,

( 1)(3 2 ) 2,..., 1

                                               
       

                                                    

i i

i j i

i i i

T

j T j i

d

u
u u
u

s
τ

= +

= − − + = −

=

⎧
⎪
⎨
⎪
⎩

 

Finally, for any subcycle , , 1[ , ]i j i ju u + , there are three 
phases. We give them as follows: In phase , , ][ ,i j i j Tu u + , 

iΟ  receives a frame from 1i−Ο  , 2 i n≤ ≤ . In phase 

, , ][ i j T Mu + , iΟ is idle (neither receiving a frame nor 
transmitting a frame), where 

,

,

                            and  1                            
2                others                                             

i j

i j

u T i n j n
M

u T T τ
⎧⎪
⎨
⎪⎩

+ = = −
=

+ + −
  

In phase , 1[ , ]i jM u + , where , 1i j M Tu + += , iΟ  relays a 

frame to 1i+Ο , 2 i n≤ ≤ . Note, when i n= , 1n+Ο  
represents the base station.  

Two examples of this schedule are illustrated in Fig. 4 
and Fig. 5. We show the case 3n =  in Fig. 4, the cycle 
period is 6 2T τ−  and the utilization of the BS is 
3 6 2T T τ− , which is consistent with Theorem 3. The 
theorem also holds for the case, 5n = , as shown in Fig. 5, 
where the cycle period is 12 6T τ−  and the utilization of 
the BS is 5 (12 6 )T T τ− . It is straight-forward to verify the 
case of n nodes, and is thus omitted. The performance 
bounds are indeed achievable in a special case under the 
algorithm above. 

Theorem 4: For the linear topology, under fair-access, 

( )U n is upper bounded by 
1( )

T

T T

n

n n+ −
 for all τ 2)( Tτ > . 

Proof of Theorem 4: 1) For 2n > : During the time 
period x , the BS needs to receive at least n frames from 

nΟ (including 1n −  relayed frames and one of its generated 
frames). Thus, nΟ transmits at least n frames. We have. 
b nT≥ . In order for nΟ  to receive 1( )n −  frames from 

1n−Ο , nΟ  needs to listen for at least 1( )n −  frames, during 
which the BS must be idle. There is also a delay of τ  
from the beginning of each frame’s transmission until the 
start of its reception. Thus, 1( )Tny ≥ − . Furthermore, when 

2n−Ο  transmits, nΟ  must not transmit during a period such 
that its traffic arrives at 1n−Ο  while 1n−Ο  is receiving the 
frame from 2n−Ο . As with Theorem 3, we note that the 
time in which nΟ  is blocked due to potential interference 
with reception at 1n−Ο  or for its own reception of traffic 



from 1n−Ο  may overlap. The first intuition of maximizing 
the overlapping period, and thus minimizing the blocked 
(idle) time is the same as the case when 2Tτ ≤ . Namely, 
we strive to maximize the throughput of 1n−Ο . Let 1n−Ο just 
complete transmission of frame A , then begin to receive 
frame B . This process is illustrated in Fig. 6. 
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Figure 6.  
2

T
Tτ< <  

But from Fig. 6, it is clear to see that we can maximize 
the overlapping period further. Fig. 7 shows the potential 
optimal situation for maximizing overlapping periods. 
Since nΟ ’s transmission during ( , )Tt t +  will interfere 
with 1n−Ο ’s reception of 2n−Ο ’s transmission during 
( , )Tt t + , the best case may be to let nΟ  receive a frame 
during the same period. But this potential optimal situation 
may (or may not) be achieved by all 2( )n − frames when 
they are sent from 2n−Ο  to 1n−Ο  under the constraint of the 
fair-access criterion. If this optimal situation is achieved 
by all 2( )n − frames from 2n−Ο , the minimum of the idle 
time generated by each frame independently is 0. Thus, we 
have 1( )T Tn nx + −≥ . So we have following inequality 

( )
1( ) 2 1

T

T T

n
U n

n n

n
n

≤
+ −

=
−

 

2) For 2n = : Since we want 
1 2

G G= , during the time 
period x , 2Ο  transmits at least two frames (one relayed 
frame and its own). We have 2b T≥ . 2Ο  needs to listen to 
at least one frame from 1Ο . We have Ty ≥  and thus, 

3Tx b y ≥= +  . So, minimizing x  yields the optimal 

utilization, 2 2 2
( )

3 3

T T

T
U n

x
= ≤ = , which proves the 

inequality for this case. 
3) For 1n = . Obviously, (1) 1U ≤ .# 
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Figure 7.   
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Next, we address the impact of end-to-end 
performance bounds on the traffic load limitation of each 
sensor. Let ρ  denote the traffic load generated by each 
sensor node. We express the propagation delay τ , in 
normalized time units, as Tα τ= . For a linear network 
under the constraint of the criterion, since each node can 
transmit at most one original frame, which requires a 
period of T in every 1 2 23( ) ( )Tn n τ−− − time period, then, 
we must have that 1 2 21 [3( ) ( ) ]T n nx αρ −− −≤ =  where 
0 1 2α≤ ≤ , if 2n ≥ . Denote m to be the fraction of actual 
data bits in a frame. We have following theorem. 

Theorem 5: For the linear topology under the fair-
access criterion, for all τ ( )2Tτ ≤ , the maximum 
feasible per node traffic load is 

1 2 23( ) ( )n n

m
α−− −

 if 2n ≥  

IV. PERFORMANCE EVALAUTION 
In this section, we present some selected numeric 

results, derived from these theorems, for underwater 
sensor networks. The optimal utilizations have been 
multiplied by m , which is the fraction of actual data bits 
in a frame, to account for protocol overhead. Define 

Tα τ=  as propagation delay factor, the classic ratio of 
propagation delay to transmission delay. 
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Figure 8.   Optimal Utilization 

Fig. 8 shows the optimal utilization vs. propagation 
delay factor α , for different n  values (number of nodes) 
based on the bounds of Theorem 3, when 1m = . We can 
see that 0.5α = , the throughput achieves the maximum in 
this range of α , for different n  values. When n  goes 
infinite, there is a limit ( )231 α− . 
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Figure 9.   Optimal Utilization 
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Figure 10.  Optimal Utilization  

Fig. 9 and Fig.10 show the optimal utilization vs. 
number of nodes when 1m =  and 0.8m = , respectively, 
for different α  values based on the bounds of Theorem 3. 
The optimal utilization decreases quickly as n  increases 
and approaches the asymptotic lower limit of optimal 
utilization, as suggested by the theorem. We also can see 
that when 0.5α = , the throughput achieves the maximum 
in this range of α . 
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Figure 11.   Minimum Cycle Time 
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Figure 12.   Maximum per Node Load 

Fig. 11 shows that the effective transmission delay 
increases linearly with n  for different value of α  values. 
Fig. 12 shows that the traffic limit, per sensor node, 
decreases quickly as n  increases for different values ofα , 
approaching the asymptotic limit of zero. 

V. CONCLUSION 
In this paper, we explored fundamental limits for 

sustainable loads, utilization, and delays in specific multi-
hop sensor network topologies for underwater sensor 
networks. We derived upper bounds on network utilization 
and lower bounds for minimum sample time for fixed 
linear topologies under the fair-access criterion.  This fair-
access criterion ensures the data of all sensors is equally 
capable of reaching the base station. We proved that under 
some conditions/assumptions, these bounds are 



achievable, and therefore optimal. From the limitation on 
the sustainable traffic loads derived, one can determine a 
lower bound for the sampling interval for such networks. 
The significance of these limits is that these bounds are 
independent of the selection of MAC protocols. Thus, the 
performance bounds for specific implementations of such 
network topologies can be explicitly determined to ensure 
the proposed networks are capable of satisfying the 
networks’ specified utilization and delay requirements. 
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